Abstract Submitted to the International Conference on Strongly Correlated Electron Systems University of Michigan, Ann Arbor August 6-10, 2001

LiV₂O₄: evidence for a two-stage screening process

John Hopkinson, Piers Coleman Center for Materials Theory, Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA

 ${\rm LiV_2O_4}$, a frustrated mixed valent metal ($d^1 \leftrightarrow d^2$), is argued to undergo two spin-screening processes. The first quenches the effective spin to produce the spin $\frac{1}{2}$ behavior seen below room temperature*, while the second produces the heavy fermi liquid character seen at low temperatures†. We present a t-J model with strong Hund's coupling of the strongly correlated d-electrons. Valence fluctuations of the Hubbard operators (S = $\frac{1}{2} \leftrightarrow 1$) combined with the frustration of the underlying corner-shared tetrahedral vanadium lattice are the essential components of our model.

^{*}Kondo et al., PRB **59**, 2609

[†]Urano et al., PRL **85**, 1052